Convergence of a direct-iterative method for large-scale least-squares problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Projection Iterative Sketch for Large-Scale Constrained Least-Squares

We propose a randomized first order optimization algorithm Gradient Projection Iterative Sketch (GPIS) and an accelerated variant for efficiently solving large scale constrained Least Squares (LS). We provide the first theoretical convergence analysis for both algorithms. An efficient implementation using a tailored linesearch scheme is also proposed. We demonstrate our methods’ computational e...

متن کامل

Regularization of Large-scale Ill-conditioned Least Squares Problems Regularization of Large{scale Ill{conditioned Least Squares Problems

Ill{conditioned problems arise in important areas like geophysics, medical imaging and signal processing. The fact that the ill{cond-itioning is an intrinsic feature of these problems makes it necessary to develop special numerical methods to treat them. Regularization methods belong to this class. The lack of robust regularization methods for large{scale ill{cond-itioned problems motivated thi...

متن کامل

Randomized Algorithms for Solving Large Scale Nonlinear Least Squares Problems

This thesis presents key contributions towards devising highly efficient stochastic reconstruction algorithms for solving large scale inverse problems, where a large data set is available and the underlying physical systems is complex, e.g., modeled by partial differential equations (PDEs). We begin by developing stochastic and deterministic dimensionality reduction methods to transform the ori...

متن کامل

Large Scale Canonical Correlation Analysis with Iterative Least Squares

Canonical Correlation Analysis (CCA) is a widely used statistical tool with both well established theory and favorable performance for a wide range of machine learning problems. However, computing CCA for huge datasets can be very slow since it involves implementing QR decomposition or singular value decomposition of huge matrices. In this paper we introduce L-CCA , a iterative algorithm which ...

متن کامل

Methods for Large Scale Total Least Squares Problems

For solving the total least squares problems, min E;f k(E; f)k F subject to (A+E)x = b+f, where A is large and sparse or structured Bjj orck suggested a method based on Rayleigh quotient iteration. This method reduces the problem to the solution of a sequence of symmetric, positive deenite linear systems of the form (A T A ? 2 I)z = g, where is an approximation to the smallest singular value of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1985

ISSN: 0024-3795

DOI: 10.1016/0024-3795(85)90073-4